Universal Derived Equivalences of Posets of Tilting Modules
نویسنده
چکیده
We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their tilting modules are related by a simple combinatorial construction, which we call flip-flop. We deduce that the posets of tilting modules of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent.
منابع مشابه
Universal Derived Equivalences of Posets of Cluster Tilting Objects
We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their cluster tilting objects are related by a simple combinatorial construction, which we call a flip-flop. We deduce that the posets of cluster tilting objects of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent. In particular, all Cambrian latt...
متن کاملOn derived equivalences of lines, rectangles and triangles
We present a method to construct new tilting complexes from existing ones using tensor products, generalizing a result of Rickard. The endomorphism rings of these complexes are generalized matrix rings that are “componentwise” tensor products, allowing us to obtain many derived equivalences that have not been observed by using previous techniques. Particular examples include algebras generalizi...
متن کاملEquivalences Induced by Infinitely Generated Tilting Modules
We generalize Brenner and Butler’s Theorem as well as Happel’s Theorem on the equivalences induced by a finitely generated tilting module over Artin algebras, to the case of an infinitely generated tilting module over an arbitrary associative ring establishing the equivalences induced between subcategories of module categories and also at the level of derived categories.
متن کاملTilting Theory for Coherent Rings and Almost Hereditary Noetherian Rings
We generalize two major ways of obtaining derived equivalences, the tilting process by Happel, Reiten and Smalø and Happel’s Tilting Theorem, to the setting of finitely presented modules over right coherent rings. Moreover, we extend the characterization of quasi–tilted artin algebras as the almost hereditary ones to all right noetherian rings. We also give a streamlined and general presentatio...
متن کاملAlmost D-split sequences and derived equivalences
In this paper, we introduce almost D-split sequences and establish an elementary but somewhat surprising connection between derived equivalences and Auslander-Reiten sequences via BB-tilting modules. In particular, we obtain derived equivalences from Auslander-Reiten sequences (or n-almost split sequences), and Auslander-Reiten triangles.
متن کامل